

SHARE Technology · Connections · Results

Understanding z/OS Communications Server Storage Usage

Alfred B Christensen – <u>alfredch@us.ibm.com</u> IBM Raleigh, NC, USA

Session: 8330 Friday, March 4, 2011: 9:30 AM-10:30 AM

Understanding z/OS Communications Server Storage Usage

Session number:	8330
Date and time:	Friday, March 4, 2011: 9:30 AM-10:30 AM
Location:	Room 212A (Anaheim Convention Center)
Program:	Communications Infrastructure
Project:	Communications Server
Track:	Network Support and Management
Classification:	Technical
Speaker:	Alfred B Christensen, IBM
Abstract:	If you have ever wondered how the z/OS Communications Server uses storage in your z/OS LPARs, this session is for you. The session will provide an overview and explanation of the z/OS Communications Server storage concepts and model - how TCP/IP and VTAM uses private storage, CSA, ECSA, CSM storage (ECSA, fixed, data spaces), 64-bit common, etc. The session will provide hints and tips about how to monitor Communications Server storage usage using display command and RMF reports.

Trademarks, notices, and disclaimers

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States or other countries or both:

MVS

- Advanced Peer-to-Peer **Networking®**
- AIX®
- alphaWorks®
- AnyNet®
- AS/400® BladeCenter®
- Candle®
- CICS®
- DataPower®
- DB2 Connect DB2®
- DRDA®
- e-business on demand®
- e-business (logo)
- e business(logo)®
- ESCON®
- FICON®

- GDDM®
- GDPS®
- · Geographically Dispersed
- Parallel Sysplex
- HiperSockets
- HPR Channel Connectivity
- HyperSwap
- i5/OS (logo)
- i5/OS®
- IBM eServer
- IBM (loao)®
- IBM®
- IBM zEnterprise[™] System
- IMS InfiniBand ®
- IP PrintWay
- IPDS
- iSeries
- LANDP®

 OpenPower Operating System/2®

Open Power

MQŠeries®

NetView®

OMEGAMON®

 Operating System/400® • OS/2®

Language Environment®

- OS/390®
- OS/400®
- Parallel Sysplex®
- POWER®
- POWER7®
- PowerVM
- PR/SM
- pSeries®
- BACF®

- Rational Suite®
- Rational® Redbooks
- · Redbooks (logo)
- Sysplex Timer®
- System i5
- System p5
- System x®
- System z®
- System z9®
- System z10
- Tivoli (logo)®
- Tivoli®
- VTAM®
- WebSphere®
- xSeries®
- z9®
- z10 BC
- z10 EC

* All other products may be trademarks or registered trademarks of their respective companies.

zEnterprise

z/Architecture

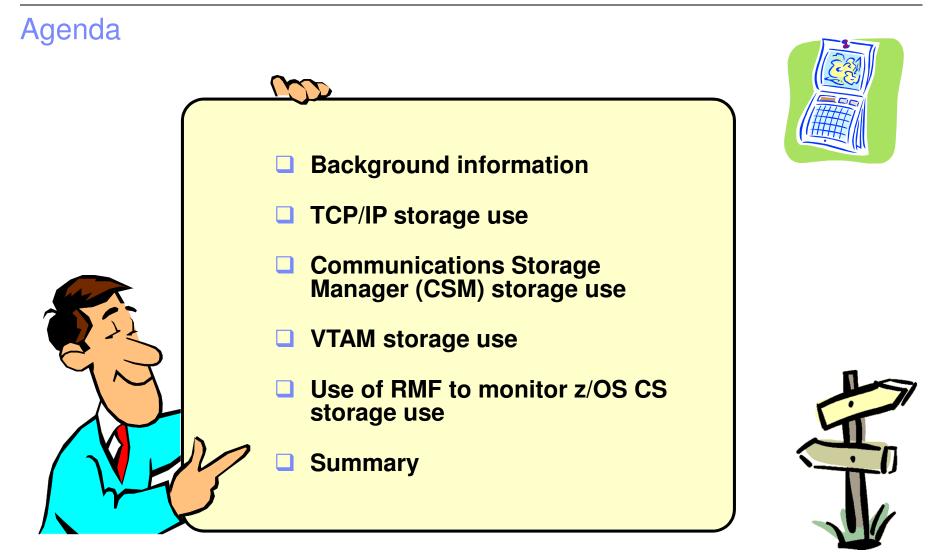
zSeries®

z/OS®

• z/VM®

z/VSE

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States or other countries or both:

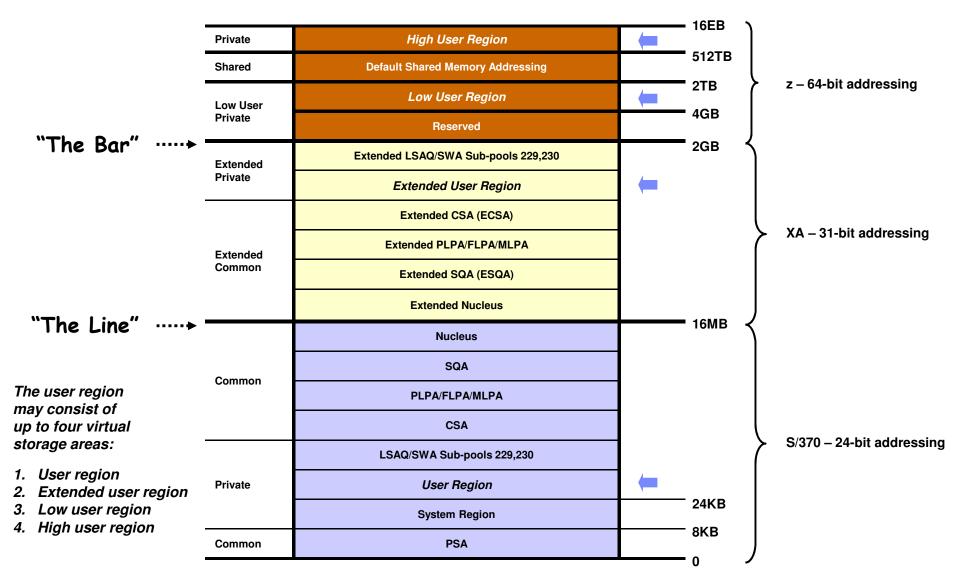

- Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
- Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license there from.
- Java and all Java-based trademarks are trademarks of Sun Microsystems. Inc. in the United States, other countries, or both.
- Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
- InfiniBand is a trademark and service mark of the InfiniBand Trade Association.
- Intel, Intel Inside, Intel Inside Iogo, Intel Centrino, Intel Centrino Iogo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
- UNIX is a registered trademark of The Open Group in the United States and other countries.
- · Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
- ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
- IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

Notes:

- Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.
- IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
- All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.
- This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
- All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
- Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
- Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Refer to www.ibm.com/legal/us for further legal information.

Disclaimer: All statements regarding IBM future direction or intent, including current product plans, are subject to change or withdrawal without notice and represent goals and objectives only. All information is provided for informational purposes only, on an "as is" basis, without warranty of any kind.


Understanding z/OS Communications Server Storage Usage

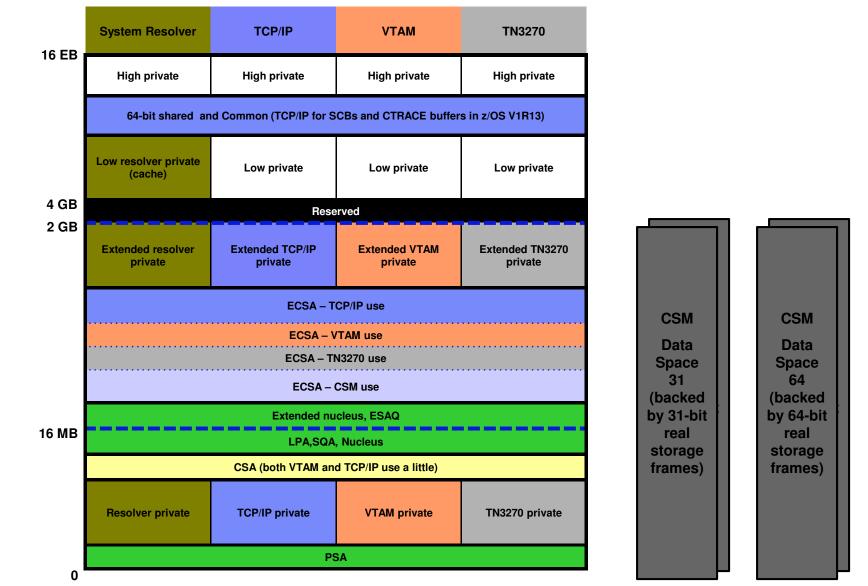
Background information

z/OS virtual storage map

KB, MB, GB, TB, PB, EB, ZB – and the lot ..

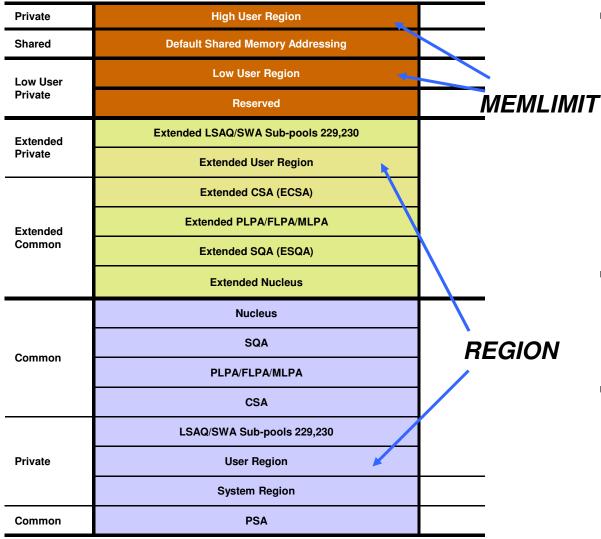
Name	Short	Size in bytes	2 to the order of
1 kilobyte	KB	1,024	10
1 megabyte	MB	1,048,576	20
1 gigabyte	GB	1,073,741,824	30
1 terabyte	ТВ	1,099,511,627,776	40
1 petabyte	PB	1,125,899,906,842,624	50
1 exabyte	EB	1,152,921,504,606,846,976	60
1 zettabyte	ZB	1,180,591,620,717,411,303,424	70
1 yottabyte	YB	1,208,925,819,614,629,174,706,176	80

A perspective of address space size over time


- A 31-bit XA address space is 128 times larger than a 24-bit S/370 address space
- A 64-bit z/Architecture address space is 8 billion times larger than a 31bit XA address space and 1024 billion times larger than a S/370 address space

Architecture	Size	Relative size	Comparison – metric	Comparison – non- metric
24-bit S/370 address space	16 MB	1	7 cm	2.8 inches
31-bit XA address space	2 GB	128	9 m	30 feet
64-bit z/Architecture address space	16 EB	1 099 511 627 776	Distance between Earth and Mars 78 341 212 Km	Distance between Earth and Mars 48 678 972 miles

Note: distance between earth and Mars varies between 66 million Km and 402 million Km. 78 341 212 Km is the average distance.



Communications Server virtual storage usage overview

Limiting the amount of virtual storage in the user region(s)

- The REGION JCL keyword limits amount of space in the user region and the extended user region
 - Includes user region below the line and between the line and the bar, but not above the bar
 - Does not include space in any of the common areas - REGION=0M gives all
 - available storage
- The MEMLIMIT JCL keyword limits the amount of space in the low and high user regions
 - Above the bar
- Installation defaults can be defined in JES and SMF
 - To be used as default when no REGION or MEMLIMIT keywords are specified in the JCL

New 64-bit exploitation in z/OS V1R13 Communications Server

- Multiple trace buffers relocated to take advantage of 64 common storage
 - VTAM internal trace (VIT) is moved from ECSA to 64 bit common storage
 - Transparent to you if you use external VIT to obtain trace records
 - Multiple CTRACE components are moved from data-spaces to 64 bit common storage. The table below summarizes the changes.
 - These moves are transparent to you as long as you use the NMI interface to obtain trace data

CTRACE Component	Current location	z/IOS V1R13 change	User
SYSTCPIP	TCPIPDS1 Dataspace	64 bit common	Stack
SYSTCPDA	TCPIPDS1 Dataspace	64 bit common	Stack (NMI)
SYSTCPIS	TCPIPDS1 Dataspace	64 bit common	Stack
SYSTCPCN	TCPIPDS1 Dataspace	64 bit common	Stack (NMI only)
SYSTCPSM	TCPIPDS1 Dataspace	64 bit common	Stack (NMI only)
SYSTCPRE	Private SP229	No Change	RESOLVER
SYSTCPRT	OMPROUTE Private storage	No Change	OMPROUTE
SYSTCPIK	IKE daemon Private storage	No Change	IKESMP
SYSTCPOT	TCPIPDS1 Dataspace	64 bit common	OSAENTA
SYSTCPNS	NSS daemon's private storage	No Change	Security Server

Installation exits may override JCL keywords

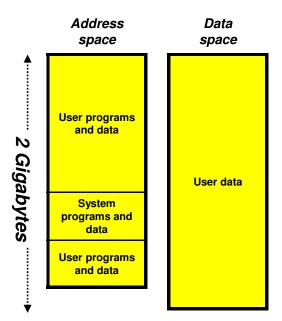
Installation exits can enforce installation standards – will override any specifications found in JCL

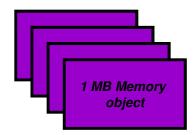
– IEALIMIT

- Is no longer a recommended exit routine for this purpose
- Can only enforce standards for user region below the 16 MB line and is linked into the MVS nucleus

– IEFUSI

- Is the preferred exit routine to enforce these limits
- Resides in the LPA
- · Can enforce standards for:
 - The user region below the 16 MB line
 - The extended user region between the 16 MB line and the 2 GB bar
- The user region above the 2 GB bar (MEMLIMIT JCL keyword)
 PPT attribute NOHONORIEFUSIREGION can be used for selected programs to ignore IEFUSI standards defined in the SCHEDxx SYS1.PARMLIB member


Data Spaces and memory objects


Data Space

- A data space is max 2 GB in size
- 31-bit addressing is used to access data in a data space
- A data space may be backed by 64-bit real storage frames (if the system has more than 2 GB of real storage)
 What CSM means with the term 'DATA SPACE 64':
 - - This is not 64-bit virtual storage, this is a normal 2 GB data space that is allowed to be backed by 64-bit real storage frames
- CSM uses so-called common data spaces
 - System-wide number of common data spaces is limited by the MAXCAD keyword in IEASYSxx
 - Default is 50

Memory object

- Virtual storage above the bar may be allocated and made part of an address space's virtual storage addressing range
- Obtained in multiples of 1 MB (a so-called memory object)
- A memory object may be a common memory object or a shared memory object - residing in the area between 2 TB and 512 TB
- A memory object may also be part of the private addressing range within an address space – part of the user region

System wide storage-related definitions

- SYS1.PARMLIB IEASYSnn member
 - CSA=(a,b)
 - "a" specifies the size of the CSA, located below 16MB
 - "b" specifies the size of the extended CSA, located above 16MB
 - Make sure this number is big enough to accommodate TCP/IP's, VTAM's, and CSM's ECSA requirements
 - Plus the requirements of whatever else you run on that system
 - Example:
 - CSA=(4M,256M)
 - * 4MB CSA below the 16 MB line
 - * 256MB ECSA above the 16 MB line

- HVCOMMON=a

- "a" specifies the size of the 64-bit common area (xxG or xxT)
 - The 64-bit common area will be placed below the 4T line.
 - The value you specify will be rounded up to a 2 gigabyte boundary
 - Default is 64 GB, minimum is 2 GB, maximum is 1 TB

- HVSHARE=a

• "a" specifies the size of the high virtual shared area.

Understanding z/OS Communications Server Storage Usage

TCP/IP storage use

© 2011 SHARE and IBM Corporation

TCP/IP storage use overview

TCP/IP user region

- Primarily extended user region
- Very little, if any, in the user region below the line
- Nothing in low and high user regions above the bar
- TCP/IP refers to this storage as POOL storage

Extended Common Service Area (ECSA)

- The part of ECSA that is obtained and managed by TCP/IP
 - Not part of CSM storage
- During TCP/IP initialization, a few modules are loaded into ECSA using dynamic LPA functions
 - Prior to z/OS V1R11 this was done by TCP/IP itself using directed load
 - Main module is EZBTIINI, which in the current z/OS V1R11 distribution is 7,117,424 bytes in size
- Otherwise ECSA storage is primarily used for common control blocks
- ECSA storage is obtained in either key 0 or key 6
 - Most workload-related storage is obtained in key 6
- ECSA storage is obtained with TCP/IP or the "System" as owner
 - Almost all TCP/IP's ECSA is obtained with the "System" as owner

Common 64-bit memory

- In z/OS V1R11, TCP/IP uses common 64-bit memory objects for Socket Control Blocks (SCBs)
- In z/OS V1R13, both VTAM and TCP/IP use common 64-bit memory objects for various trace buffers

D TCPIP,[stackname],STOR

- This does not include CSM storage
- Limits can optionally be configured in the TCP/IP Profile for POOL and ECSA storage
- POOL storage
 - The amount of storage TCP/IP uses in its user regions
- ECSA storage
 - In releases prior to z/OS V1R12, ECSA includes the size of load module EZBTIINI, which is loaded into ECSA during initialization (in z/OS V1R11 using dynamic LPA functions).
 - EZBTIINI resides in storage key 0.
 - The total size of this module is roughly 6,950K in z/OS V1R11, which is up about 660K from z/OS V1R10.
 - In z/OS V1R12, ECSA does not include any load modules that have been loaded into common storage
 - The size of load modules in ECSA is reported separately in the output from this command
 - Most of the ECSA storage is from an RMF perspective reported under the MVS master address space (RMF job name of %MVS).
 - The ECSA storage is obtained with OWNER(SYSTEM)
 - You cannot get an RMF Common Storage report to match the number above

64-BIT common

 This storage is obtained in 1 MB objects, but only backed by real storage or page data set space to the extend TCP/IP uses it

CSA Modules

- This is common storage used by TCP/IP load modules. Reported in z/OS V1R12.

D TCPIP,[stackname],STOR

z/OS V1R11

13.59.24 d tcp:	ip,tcpcs,stor			
13.59.26 EZZ84	53I TCPIP STORAG	E		
EZZ8454I TCPCS	STORAGE	CURRENT	MAXIMUM	LIMIT
EZZ84551 TCPCS	ECSA	9645K	10087K	NOLIMIT
EZZ84551 TCPCS	POOL	14017K	14171K	NOLIMIT
EZZ84551 TCPCS	64-BIT COMMON	1M	1 M	NOLIMIT
EZZ8459I DISPLA	Y TCPIP STOR COM	PLETED SUCCE	ESSFULLY	

z/OS V1R12

09.19.47	d tcpip	p,,stor				
09.19.47	EZZ8453	3I TCPIP STORAGE				
EZZ8454I	TCPCS	STORAGE	CURRENT	MAXIMUM	LIMIT	
EZZ84551	TCPCS	ECSA	2789K	3245K	NOLIMIT	
EZZ8455I	TCPCS	POOL	14212K	14212K	NOLIMIT	
EZZ8455I	TCPCS	64-BIT COMMON	1M	1M	NOLIMIT	
EZZ8455I	TCPCS	CSA MODULES	7423K	7423K	NOLIMIT	┝╡
EZZ8459I	DISPLAY	TCPIP STOR COMPI	LETED SUCCE	ESSFULLY		

ECSA storage is now reported as workload-related storage use only. Load $\leftarrow _$ modules in ECSA are reported separately in the CSA Modules line.

D TCPIP, TN-Server-Name, STOR

- Each TN3270 server address space on your system also support the D TCPIP,,STOR command
 - Output will reflect that TN3270 server address space's use of storage
 - Enter the command for each TN3270 server address space

13.30.24 d tcpip,tn3270a	, stor		
13.30.24 EZZ8453I TELNET	STORAGE		
EZZ8454I TN3270A STORAGE	CURRENT	MAXIMUM	LIMIT
EZZ8455I TN3270A ECSA	97к	117K	NOLIMIT
EZZ8455I TN3270A POOL	6636K	7392к	NOLIMIT
EZZ8455I TN3270A 64-BIT	COMMON 0M	і ОМ	NOLIMIT
EZZ8455I TN3270A CTRACE	262372K	262372к	262372K
EZZ8459I DISPLAY TELNET S	TOR COMPLETED SU	CCESSFULLY	

- There are no limits that can be configured for a TN3270 server address space
- The storage options include a CTRACE storage type
 - The CTRACE storage is in the TN3270 server's private area (not common and not data space), but is not included in the POOL storage type line
 - It is currently set to 256 MB
 - The limit here is not configurable
 - The size reflects how much storage is obtained for tracing, not what currently is being used for tracing

How do you limit TCP/IP's storage use?

POOL storage

- Via the REGION keyword in TCP/IP's start up JCL
 - User and extended user region size
 - Can be overridden by installation exits
 - Primarily IEFUSI
 - If used, should be accompanied by limitations in TCP/IP's profile
- TCP/IP Profile
 - GLOBALCONFIG POOLLIMIT xxK or xxM
 - 0 means no limit and is the default

ECSA storage

- TCP/IP Profile
 - GLOBALCONFIG ECSALIMIT xxK or xxM
 - 0 means no limit and is the default

• The GLOBALCONFIG limits will be enforced by TCP/IP itself

- Warning messages at 80% (constrained), 90% (Critical), and 98% (Exhausted) utilization
 - EZZ4360I, EZZ4361I, and EZZ4362I for ECSA
 - EZZ4364I, EZZ4365I, and EZZ4366I for POOL
- Storage relieved message issued when under 75% or 85% again
 - EZZ4363I for ECSA and EZZ4367I for POOL

Considerations for choosing POOL and ECSA limits

- Monitor TCP/IP storage use during your acceptable peak periods
- Add a reasonable fudge factor to the observed maximum usage values
 - The ECSALIMIT ensures that TCP/IP does not overuse the z/OS system's common storage.
 - It is intended to improve system reliability by limiting TCP/IP's common storage usage.
 - Accommodate for temporary application "hang" conditions, where TCP/IP must buffer large amounts of inbound or outbound data.
- If you choose to limit POOL storage, make sure you use a value that is lower than or equal to what your installation exit (IEFUSI) enforces
 - The benefit of specifying POOL limit is that you will receive warning messages before storage obtain calls start failing with not enough storage available to satisfy the requests
- The values can be changed via OBEYFILE command processing

Other considerations for TCP/IP storage controls - UDP

• UDP applications:

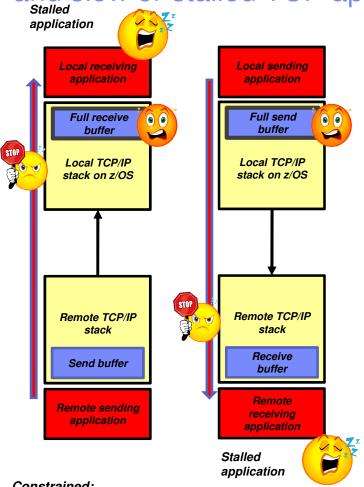
- Control queue size of UDP messages
- UDPCONFIG UDPQUEUELIMIT
 - When UDPQUEUELIMIT is ON then receive queues for UDP ports are limited to 2000 messages or 2800K
- To further control UDP queue sizes, enable IDS policies with traffic regulation and UDP message queue size limits per UDP application
- Does not apply to EE UDP traffic !!

🕱 Modify De	tails 🛛 🔀						
Use this panel to limit	the traffic allowed to your applications.						
Traffic regulation id	entification						
Name: *	All_Well-Known_UDP						
Traffic descriptor: A	IL_Well-Known_UDP						
Action: L	imit and Report						
Enter parameters for UDP traffic Message queue size: Very long							
OK	Cancel Help ?						

This will also benefit use of CSM storage

Other considerations for TCP/IP storage controls - TCP

TCP applications


- Control number of concurrent connections with TCP Listeners to reduce impacts of flooding attacks:
 - IDS policy with traffic regulation and connection limits
- Monitor "misbehaving" applications that build up large send or receive buffers:
 - Monitor new z/OS V1R11 syslogd messages about applications with long send or receive queues
 - Watch for EZZ86611 to EZZ86641
 messages
 - These messages will be logged through TRMD and syslogd even if you have no IDS policy enabled

🕱 New Det	ails	×
Use this panel to lim	it the traffic allowed to your applications.	
.		
 Traffic regulation 		
Name:	* All_Well-Known_TCP	
	All_Well-Known_TCP	
Action:	Limit and Report	
Enter parameters	for TCP traffic	
C Limit by total co	onnections	-
Maximum numb	er of connections: * 500 (0-65535)	
Limit by percen	tage of total connections	
🔵 Nolimit per	host	
 Limit each ł 	host to the following percentage of the maximum connections:	
×	25 (percent)	
C Limit by socket	or by all sockets	
Limit scope:	Each socket 💌	
	OK Cancel Help	?

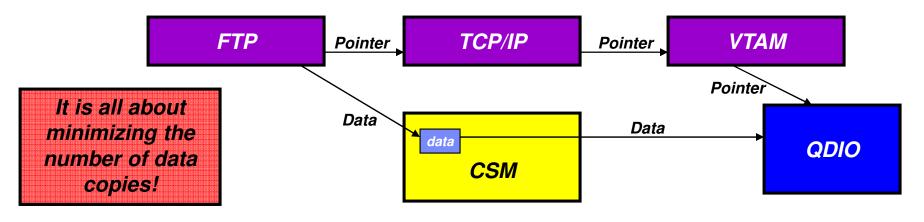
This will also benefit use of CSM storage

z/OS V1R11 storage improvements for storage shortages situations and slow or stalled TCP applications

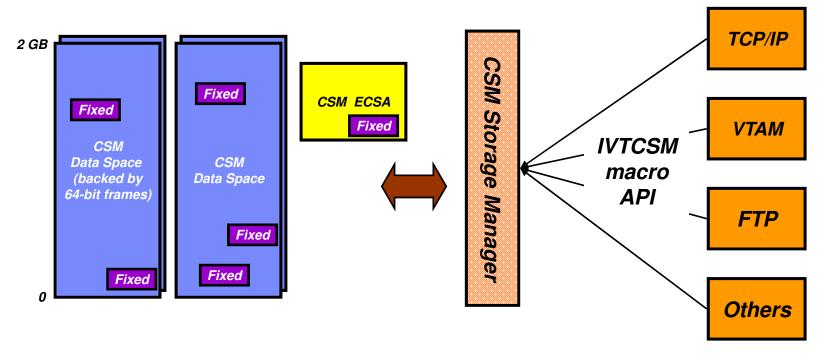
- Data in a send buffer is page fixed awaiting IO operations to be initiated
 - When application is not making progress or fixed storage is constrained
 - All new data added to TCP send queue is marked as page-able
 - When storage becomes constrained, all unsent data on send queues for all non-local TCP connections is marked as page-able
 - Before data is sent to remote stack it is changed back to fixed, as required by the DLC
- It was very difficult to identify which local applications caused excessive amounts of space to be used on the send or receive queues
 - Alerts issued to indicate TCP queue in constrained state
 - Indicate old data on send or receive queue
 - Identify connection (connection id, job name, addresses, ports)
 - Constrained state entry and exit indicated
 - Issued to syslogd using TRMD •

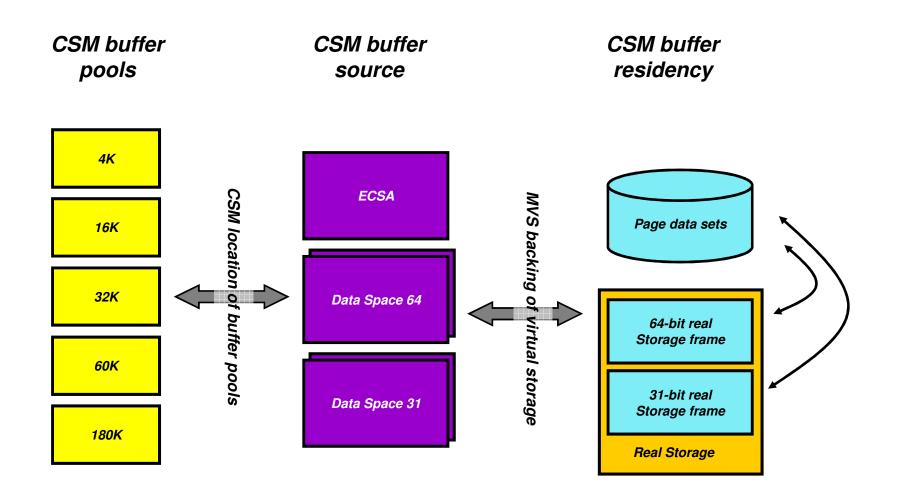
- Constrained:
 - Queue full & data at least 30 sec old
 - Anv data at least 60 sec old
- Entry alert when 90% of constrained threshold reached, exit alert when down at 80%
- z/OS V1R13 adds IDS policy control to this support

Understanding z/OS Communications Server Storage Usage


Communications Storage Manager (CSM) storage use

Communications Storage Manager (CSM)


- The communications storage manager (CSM) is a VTAM component that allows authorized host applications to share data with VTAM, TCP/IP and other CSM users without the need to physically copy the data.
- CSM includes a public application programming interface (API) that provides a way to:
 - Obtain and return CSM buffers
 - Change ownership of buffers
 - Copy buffers
 - Manage CSM buffers
- The storage key for CSM buffers is key 6
 - Most CSM storage is obtained with the "System" as owner


CSM virtual storage overview

- Users of CSM storage use the IVTCSM macro to interact with the CSM storage manager
- CSM storage is organized into buffer pools of fixed sizes (4K, 16K, 32K, 60K, and 180K)
- CSM storage is either ECSA or data space storage
 CSM may create up to a total of five data spaces if needed
- CSM storage may be fixed or pageable
 - CSM storage may be page fixed in order to support an IO operation that requires fixed storage

CSM buffer pools, source, and residency

How to control CSM storage

- IVTPRM00 member of SYS1.PARMLIB Note: Only the 00 suffix is allowed IVTPRM00.
 - Read by VTAM during initialization
 - Can be modified and read via a MODIFY CSM without any parameters

• You can control:

- The maximum amount of CSM storage that can be fixed at any point in time
 - Includes both ECSA and data space fixed storage
- The maximum amount of ECSA storage, CSM can use at any point in time
- How each of the five buffer pools is to be managed per buffer source
 - The default initial number of buffers to create the first time a user of CSM services request a pool to be created of a given size in one of the three CSM buffer sources
 - If initial number of buffers is set in IVTPRM00, it will always be used otherwise the initial number of buffers depend on what the first requester asks for
 - The minimum number of free buffers in the pool before expansion must be done
 - The number of buffers the pool is to be expanded by when expansion occurs

• Each of the data spaces CSM uses is 2 GB in size and no further controls are available for those

Max fixed 100M	Buffer size	4K	16K	32K	60K	180K
Max ECSA 100M	Initial	64	16	16	16	2
A health check suggests these	Minimum free	8	4	2	2	1
two should be set to 120M as an initial value.	Expansion units	16	8	4	4	2

	IVT5530I IVT5531I IVT5532I	SIZE	SOURC			INUSE	FREE	TOTAL	#buf	Exp?
A "D NET CSM" command	IVT5533I	4K	ECSA			200K	312К	512K	128	yes
A "D NET,CSM" command	IVT5533I		ECSA			0 M	256K	256K		
will provide a quick	IVT5533I		ECSA			0M	512K	512K	cen censen cen cen Gran	no
overview of how much	IVT5533I		ECSA			OM	0M	0M		
overview of now much	IVT5533I		ECSA			M0	360K	360K		no
storage has been allocated	IVT5535I IVT5532I		ECSA			200K	1440K	1640K		
by CSM, and how much of	IVT5533I	4K	DATA	SPACE	31	0м	256K	256K	64	no
	IVT5533I	16K	DATA	SPACE	31	0M	0 M	0M	0	
it is in-use or free for use by	IVT5533I	32K	DATA	SPACE	31	0M	0М	0М	0	
a CSM user.	IVT5533I		DATA		-	0 M	0 M	0M		
	IVT5533I		DATA			OM	0M	0M	* CO # CO > # CO # CO # CO # CO > CO > CO	
	IVT5535I IVT5532I				31	ОМ	256K	256K		
Three main locations:	IVT5533I		DATA		64	4372к	236K	4608K	1152	yes
	IVT5533I	16K	DATA	SPACE	64	0 M	256K	256K	16	no
– ECSA	IVT5533I	32K	DATA	SPACE	64	64K	448K	512K	16	no
 Data Space 31 	IVT5533I	60K	DATA	SPACE	64	0м	0М	0M	0	
•	IVT5533I		DATA			0M	360K	360K	2	no
 Data Space 64 	IVT5535I IVT5532I	TOTAL	DATA	SPACE	64	4436K	1300K	5736K		
	IVT55351 IVT55321		DATA	SPACE		4436K	1556K	5992K		
Sample IVTPRM00 for the	IVT55321 IVT5536I		ALL S	SOURCES	 5	4636K	2996K	7632K		
•	IVT5538I					120M FIXED		7161K		
system used for this D	IVT5541I	FIXED	MAXIM			7161K SINC		LAY CSM		
CSM command:	IVT5594I					7161K SINC	E IPL			
	IVT55391					120M ECSA	CURRENT =	1955K		
– FIXED MAX(120M)	IVT5541I						E LAST DISPI	LAY CSM		
- ECSA MAX(120M)	IVT55941					1955K SINC	E IPL			
						: CSM64001 : CSM31002				

CSM buffer pool usage for user of CSM storage

- To see how much CSM storage each of the CSM 'users' currently are using, issue a D NET,CSM,OWNERID=ALL command
 - This command can also be issued with a specific ownerID
- In this example, only VTAM (VTAMCS) and a TCP/IP stack (TCPCS) are using CSM storage

D NET, CSM	M, OWNER	ID=ALL command		
IVT5508I	DISPLAY	Y ACCEPTED		
IVT5549I	PROCESS	SING DISPLAY CS	M COMMAND - OWNERID SPECIFIED	
IVT5530I	BUFFER			
IVT5551I	SIZE	SOURCE	STORAGE ALLOCATED TO OWNER	
IVT5532I				
IVT5553I	4K	ECSA	48K	
IVT5553I	32K	ECSA	64K	
IVT5554I	TOTAL	ECSA	112K	
IVT5532I				
IVT5553I	4K	DATA SPACE 64	20K	
IVT5554I	TOTAL	DATA SPACE 64	20K	
IVT5532I				
IVT5554I	TOTAL	DATA SPACE	20K	
IVT5532I				
IVT5556I	TOTAL	FOR OWNERID	132K	
			JOBNAME = VTAMCS	
IVT5532I				
IVT5530I				
			STORAGE ALLOCATED TO OWNER	
IVT5532I				
IVT5553I	4K	ECSA	128K	
IVT5553I	32K	ECSA	64K	
IVT5554I	TOTAL	ECSA	192K	
IVT5532I				
IVT5553I	4K	DATA SPACE 64	4324K	
IVT5553I	16K	DATA SPACE 64	16K	
IVT5554I	TOTAL	DATA SPACE 64	4340K	
IVT5532I				
		DATA SPACE		
IVT5532I				
IVT5556I	TOTAL	FOR OWNERID	4532K	
IVT5557I	OWNERI	D: ASID = 004D	JOBNAME = TCPCS	
IVT5599I	END			

Detailed CSM buffer pool usage overview

- Per each of the 15 CSM buffer pools, a detailed usage display can be used
 - D NET,CSMUSE,POOL=poolname

F NET,CSM,

- MONITOR=YES
- MONITOR=NO
- MONITOR=DYNAMIC
 - CSM dynamically activates CSM buffer monitoring when CSM storage usage approaches the constrained level
- D NET,CSM,MONITOR

The pool names are:

- 4KECSA D NET, CSMUSE, POOL=4KECSA	
- 16KECSA IVT5508I DISPLAY ACCEPTED	
- 32KECSA IVT5574I PROCESSING DISPLAY CSMUSE COMMAND - POOL SPECIFIED 654	
- 60KECSA IVT5584I USAGE DETAILS - 4KECSA POOL - POOL TOTAL = 164K	
- 180KECSA	
- 4KDS IVT5576I AMOUNT MONITOR ID OWNERID JOBNAME	
- 16KDS	
- 32KDS IVT5577I 80K 21 003A TCPCS	
- 60KDS IVT5579I BUFFER USE FOR 21 : USECNT USERDATA MONITOR HISTOR	Y
- 180KDS	
- 4KDS64 IVT5577I 52K 21 002A VTAMCS	
- 16KDS64 IVT5579I BUFFER USE FOR 21 : USECNT USERDATA MONITOR HISTOR	Y
- 32KDS64 IVT5580I / 5 F0C4F0F0 0000021	
- 60KDS64 IVT5580I / 4 F2C5F0F1 0000021	
- 180KDS64 IVT5580I / 4 F2C5F0F0 0000021	
IVT5585I DETAIL TOTAL FOR 4KECSA POOL = 132K	
IVT5599I END	

Monitor IDs are documented in z/OS Communications Server: IP and SNA Codes Chapter 4

CSM monitor IDs - lots of good hints about where CSM storage is being used

IVT5577I	80K	21		003	A TCP	CS
IVT5579I	BUFFER USE	FOR 21	:	USECNT	USERDATA	MONITOR HISTORY
IVT5580I				20	F2C5F0F2	00000021 🔨
IVT5532I						
IVT5577I	52K	21		002	A VTA	MCS
IVT5579I	BUFFER USE	FOR 21	:	USECNT	USERDATA	MONITOR HISTORY
IVT5580I				5	F0C4F0F0	00000021 🔸
IVT5580I				4	F2C5F0F1	0000021
IVT5580I				4	F2C5F0F0	0000021

Range	Description
X'00' – X'1F'	CSM Monitor IDs
X'20' – X'2F'	DLC Monitor IDs
X'30' – X'8F'	VTAM Unique Monitor IDs
X'90' – X'97'	TCP/IP IF Layer Monitor IDs
X'98' – X'9F'	TCP/IP IP Layer Monitor IDs
X'A0' – X'AF'	TCP/IP Transport Layer Monitor IDs
X'B0' – X'FF'	TCP/IP Misc Monitor IDs

For monitor ID 21 (DLC Read Operation):

• VTAM

- VTAM owns 52K of 4KECSA CSM buffers used for read operations at the DLC layer
- The read operations are associated with devices 0D00 (CTC), 2E01 (QDIO write), and 2E00 (QDIO read)

• TCP/IP

- TCP/IP owns 80K of 4KECSA CSM buffers used for read operations at the DLC layer
- TCP/IP's read operation is associated with device 2E02 (QDIO data path)
- For monitor ID X'21', the user field will provide the EBCDIC sub-channel read device unit address associated with this device. Some devices can configure how much read storage is used (for example, QDIO devices).
- Other monitor IDs use the user data field for other types of information.

Understanding z/OS Communications Server Storage Usage

VTAM storage use

VTAM storage use overview

- VTAM user region
 - Primarily extended user region
 - Some in the user region below the line
- Common Service Area (CSA) referred to by VTAM as CSA24
 - VTAM uses CSA below the line for a few modules and control blocks

Extended Common Service Area (ECSA)

- The part of ECSA that is obtained and managed by VTAM
 - Not part of CSM storage
- VTAM has a few modules loaded into ECSA
- Otherwise ECSA storage is primarily used for common control blocks
- ECSA storage is obtained in either key 0 or key 6
 Most of VTAM's ECSA storage is obtained in key 6
- ECSA storage is obtained with VTAM or the "System" as owner
 - Workload related ECSA storage is generally obtained in key 6 with VTAM as owner

How do you limit VTAM's storage use?

- VTAM's private storage (VTAM's POOL storage)
 - Via the REGION keyword in VTAM's start up JCL
 - Private and extended private region size
 - Can be overridden by installation exits primarily by IEFUSI

CSA+ECSA storage

- Via the CSALIMIT VTAM start option (ATCSTRxx), which covers both CSA and ECSA
 - CSALIMIT=0 Default, limit set to 90% of system limit (IEASYSnn CSA+ECSA limit)
 - CSALIMIT=nn Warning when reached, but will continue until only 25% of system limit is available
 - CSALIMIT=(nn,F) Will not go above the limit specified
- Can be changed dynamically via a MODIFY VTAMOPTS or MODIFY CSALIMIT command

CSA storage below the line

- Via the CSA24 start option, which specifically covers 24-bit addressable CSA storage (CSA24 is a subset of the CSALIMIT value)
 - CSA24=a
 - CSA24=0 is the default and means no limit
 - Can be changed dynamically via a MODIFY VTAMOPTS or MODIFY CSALIMIT command

How do you monitor VTAM's storage use?

Via a D NET, BFRUSE command

- Towards the end of the output from that command is a breakdown of VTAM's current storage use (limit, current, high-water mark)
 - CSA
 - CSA24
 - Private

In this example, this is the default limit: 90% of IEASYSnn CSA+ECSA

IST449I CSALIMIT = 240012K, CURRENT = 2562K, MAXIMUM = 2578K	CSA+ECSA
IST790I MAXIMUM CSA USED = 2578K	
IST1667I SYSTEM CSA LIMIT = 266680K	
IST1831I 91% OF SYSTEM CSA STORAGE REMAINING = 243320K	
IST449I CSA24 LIMIT = NOLIMIT, CURRENT = 60K, MAXIMUM = 63K	CSA
IST790I MAXIMUM CSA24 USED = 63K	
IST595I IRNLIMIT = NOLIMIT, CURRENT = 0K, MAXIMUM = 0K	
IST981I VTAM PRIVATE: CURRENT = 1030K, MAXIMUM USED = 1183K	Private
IST924I	
IST1565I CSA MODULES = 1756K	Modules in CSA24
IST1565I CSA24 MODULES = 40K	and ECSA
IST1565I PRIVATE MODULES = 7497K	

Understanding z/OS Communications Server Storage Usage

Use of RMF to monitor z/OS CS storage use

Communications Server storage is in Key 6

- The RMF Monitor II Virtual Storage Activity report reports the amount of Key 6 storage in CSA and ECSA
 - The Communications Server uses key 6 storage

			V	/IRTUAL	STORAGE	АСТ	ΙVΙΤΥ			
	z/OS V1R11		SYSTE	M ID 3090	DATE 06/1	6/2009	INTER	VAL 09.44.920		
			RPT V	VERSION VIR11 RME	TIME 11.0	5.15	CYCLE	1.000 SECONDS		
				COMMON ST	ORAGE SUMMARY					
NUMBER OF	SAMPLES	50								
STA	TIC STORAGE M	IAP			AL	LOCATED	CSA/SQA			
AREA	ADDRESS	SIZE		BEI	LOW 16M		EXTENDE	D (ABOVE 16M)		
EPVT	16E00000	1682M		MIN	MAX	AVG	MIN	MAX	AVG	
ECSA	6D71000	257M	SQA	568K 11.05.16	568K 11.05.16	568K	14.5M 11.13.15	14.7M 11.08.55	14.6M	
EMLPA	6D70000	4K	CSA	372K 11.05.16	372K 11.05.16	372K	23.0M 11.05.16	23.2M 11.06.15	23.1M	
EFLPA	6D6D000	12K								
EPLPA	2CD0000	64.6M	ALLOO	CATED CSA BY KEY						
ESQA	1A0C000	18.8M	0	168K 11.05.16	168K 11.05.16	168K	12.5M 11.05.16	12.5M 11.05.16	12.5M	
ENUC	1000000	10.OM	1	84K 11.05.16	84K 11.05.16	84K	832K 11.05.16	832K 11.05.16	832K	
16	MEG BOUNDARY		2	36K 11.05.16	36K 11.05.16	36K	16K 11.05.16	16K 11.05.16	16K	
NUCLEUS	FD6000	168K	3	OK 11.05.16	0K	0К	OK 11.05.16	0K	0K	
SQA	E5A000	1520K	4	OK 11.05.16	0K	0K	4K 11.05.16	4K 11.05.16	4K	
PLPA	BF3000	2460K	5	4K 11.05.16	4K 11.05.16	4K	668K 11.05.16	668K 11.05.16	668K	
FLPA	BF2000	4K	6	80K 11.05.16	80K 11.05.16	80K	8964K 11.05.16	9160K 11.06.15	9048K 🛛	+
MLPA	BE5000	52K	7	OK 11.05.16	0K	0K	228K 11.05.16	228K 11.05.16	228K	Т
CSA	800000	3988K	8-F	OK 11.05.16	0K	0K	OK 11.05.16	0K	0K	
PRIVATE	2000	8184K								
PSA	0	8K	SQA E	EXPANSION INTO CS	SA					
				OK 11.05.16	0K	0K	OK 11.05.16	0K	0K	

RMF Monitor III Common Storage report

 Not too useful since most of the common storage that is obtained by the Communications Server components is obtained with the "SYSTEM" as owner (%MVS as jobname).

RMF V1R11 Common Storage Command ===>			Liı	ne 1	of 61	L	Scroll	L ===>	CSR	VTAM's modules in ECSA, CSM's,
Samples: 90 System: 309) Date	: 07	/06/09	9 T	ime: 1	13.05.00	Range	e: 90	Sec	and TCP/IP's
			Deer				3	4-		ECSA storage
Greeten To fermetica			- Pero				Amou			is accounted
System Information		CSA	ECSA	SQA	ESQA	CSA		SQA	-	for under
IPL Definitions			•	• • •		3980K	-	1520K	19M	۶/MVS
Peak Allocation Values		16	9	80	69	639K	_	1211K	13M	
Average CSA to SQA Conversion	on	0	0			0	0		/	VTAM's
Average Use Summary		8	9	35	69	324K	23M	531K	13M	workload-
Available at End of Range		92	91	65	31	3656K	234M	989K	590⁄3K	related ECSA
										storage is
Unalloc Common Area: 4564K								/		accounted for
										under VTAM
Service	ELAP	1	Percei	nt U	sed -		Amount	Used		_ itself
Jobname Act C Class ASID	Time	CSA	ECSA	SQA	ESQA	CSA	ECSA	SQA	ESQA	
%MVS		3	6	31	38	127K	15M	478K	7342K	TCP/IP
%REMAIN		0	0	0	0	424	105K	128	6240	
VTAMCS S SYSSTC 0041	З.ОН	1	1	0	0	22032	2485K	0	696	components have minor
TCPCS S SYSSTC 0058	2.9н	0	0	0	0	136	47272	0	991	
TN3270A S SYSSTC 0061	2.9н	0	0	0	0	136	24432	_ 0	632	ECSA amounts
ABCRESO S SYSSTC 0040	2.9H		0	0	0	0	312	0	1280	accounted
OMPROUTE S SYSSTC 0064	2.9H	-	0	0	0	0	952	0	1200	under their
	2.911	0	U	0	0	0	254		1200	own address
										spaces

RMF Monitor III Storage Memory Objects (64-bit storage)

- Both the resolver address space and TCP/IP use 64-bit virtual storage since z/OS V1R11
 - Resolver uses 64-bit user region storage
 - TCP/IP uses 64-bit common storage

RMF V1R11 Storage Command ===>	e Memory Objects	:	Line 1 of		L ===> CSR	
Samples: 90	System: 3090 Dat	e: 07/06/	09 Time:	13.05.00 Range	e: 90 Sec	
Memory Objects Common Shared La 6 0	F	'rames	1 MB	Area Used Common Shared 0.0 0.0		
Service Jobname C Class		-	jects Shr Large		Bytes Comm Shr	<i>Resolver uses 64-bit private for the DNS</i>
SMSPDSE S SYSTEM TRACE S SYSTEM GRS S SYSTEM	0008 12 0004 8 0007 4	8 0	0 0 0	76.0M <u>8192K</u> 140G		– cache
ABCRESOSSYSSTCJESEAUXSSYSSTCZFSSSYSSTC*MASTER*SSYSTEMTCPCSSSYSSTC	0040 4 0027 3 0049 2 0001 1 0058 1	2 0 1	0 0 0 0	22.0M 1024K	0 0 <u>3072K</u> 0 0 0 1024K 0 1024K 0	 TCP/IP uses 64-bit common memory for its sockets control blocks

Understanding z/OS Communications Server Storage Usage

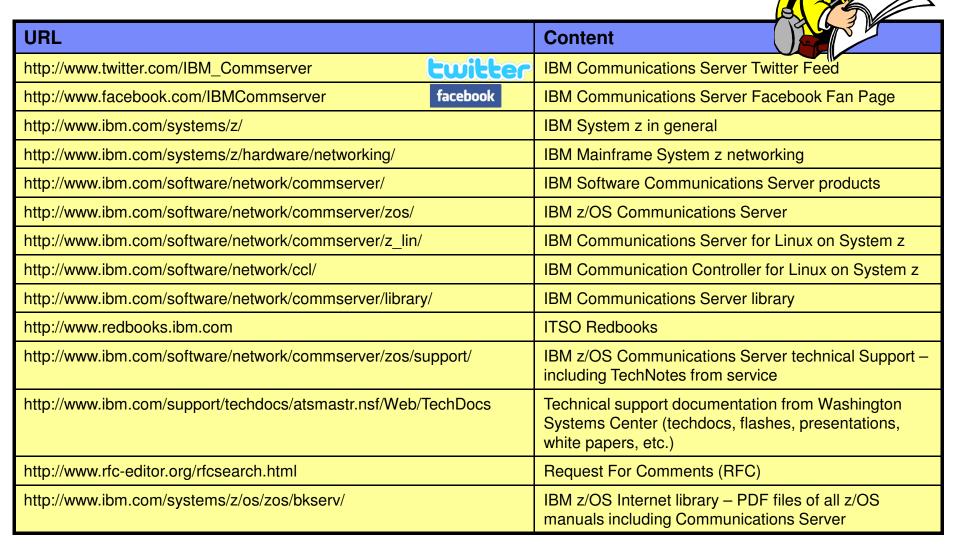
Summary

Summary

- Limiting CS common storage use should be done to protect other subsystem's access to common storage
 - Severe network spikes (normal or the results of an attack) can require large amounts of common storage for a period of time
 - To avoid CS monopolizing all common storage on a system, limits should be enforced
 - There are no general values that will work for everyone
 - Monitor your system for a period of normal and acceptable peak workloads
 - Communications Server components have mechanisms built in to deal with storage constraints where the limits are approached
 - The intended objective of those mechanisms is to keep the system running in a controllable state, reducing the amount of network traffic to/from the system for a brief period of time
 - If other subsystems are unsuccessful in obtaining any more common storage, they may or may not be able to "survive"

Summary

- To get a complete picture of Communications Server common storage use, you need to add up the following items:
 - ECSA use from the D TCPIP,,STOR command for all stacks
 - For z/OS V1R12: Also the CSA modules from D TCPIP,,STOR command
 - ECSA use from the D TCPIP, TN-Server, STOR command for all TN3270 server address spaces
 - CSM total ECSA use from the D NET,CSM command
 - VTAM total ECSA use from the D NET, BFRUSE command


For all items, you can collect

- Current use
- High-water mark
- Limit (if one has been configured)

ASName	Stor-type	Current	HighWater	Limit	In-use
	CSA	338432	654152	3968K	8.33%
System	ECSA	24067K	24916K	262720K	9.16%
	SQA				
	ESQA				
TCPCS	ECSA POOL	2752K	3243K	0	N/A
	64-bit Commo				
TCPCS	ECSA Modules	7428K	7428K	0	
			2844K		
	POOL			0	N/A
VTAMCS	ECSA Modules	1776K			
VTAMCS	CSA Modules	40960			
	PRIV Modules				
TN3270A	ECSA	119808	119808	0	N/A
TN3270A	POOL	7826K	7827K	0	N/A
TN3270A	64-bit Commo CTRACE	0	0	0	N/A
TN3270A	CTRACE	262372K	262372K	262372K	100.00%
CSM	ECSA Dataspace 31	1554K	0	122880K	1.26%
CSM	Dataspace 31	0	262144	2048M	0.00%
CSM	Dataspace 64	8660K	9960K	2048M	0.41%
CSM	Fixed	11001K	0	122880K	8.95%

And as usual, a little REXX program can do wonders to bringing order into all that data ..

For more information

For pleasant reading